

MODEL ANSWER

SUMMER-18 EXAMINATION

Subject Title:- Electronic Engineering Materials

Subject Code:-

22217

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answer			
Q.1		Attempt any FIVE of the following :	10 Marks		
	a)	Define the term 'Photoelectric emission.	2 Marks		
	Ans:	Photoelectric emission is defined as "emission of electron from the metal surface, when illuminated by light"	2 Marks		
	b)	List dielectric materials (any four).	2 Marks		
	Ans: i)Mica ii) Porcelain iii)polythene iv)Bakelite v)polyvinyl chloride vi)rubber vii)cotto viii)silk ix)glass x)paper &boards xi)wood xii) enamel covering xiii)transformer oil xiv)polymers.				
	c) Define the term 'Permeability'. State its unit.				
	Ans:	The capability of the magnetic material to conduct the magnetic flux is known as permeability. Unit :H/m or H m-1 (henries per meter),or N.A-2 (Newton per Ampere square)	1 Marks 1 Marks		
	d) Sketch energy band diagram of intrinsic semiconductor.				
	Ans:		2 Marks		

Page1

		Conduction band I Small forbidden gap Eg=1eV Valence band		
	e)	List electrical conducting material (any four).	2 Marks	
	Ans:	Copper, gold ,silver ,aluminum , mercury ,steel, iron, sea water	1/2 marks each	
	f)	'Pentavalent impurity materials are called as Donor impurity.' Justify your answer.	2 Marks	
	Ans: Pentavalent impurity materials like Arsenic ,phosphorus and Antimony has 5 valence electron ,out of which four are utilized in bonding with intrinsic semiconductor like silicon or germanium and the one electron left is donated to act as charge carrier hence, Pentavalent impurity materials are called as Donor impurity.'			
	g) State working principle of LED.			
	Ans:	LED works on the principle of "electroluminescence" In electroluminescent materials, which are semiconductors the energy of an electric filed produces a localized high free charge carrier density and light is emitted when the free charge carrier combine.	1 Marks 1 Marks	
Q 2		Attempt any THREE :	12 Marks	
	a)	State the effect of following factors on resistivity of electrical conducting material :(i) Temperature (ii) Alloying (iii) Cold work (iv) Age Hardening	4 Marks	
	Ans:	(i) Temperature: As the temperature increases the resistivity of material increases, hence conductivity decreases.	1 Marks 1 Marks	
		(ii) Alloying: Addition of another metal to a pure metal will increase the resistivity considerably hence conductivity decreases.	1 Marks	
		(iii) Cold work: Mechanical distortion taking place in metal increases resistivity of a metal thereby decreasing the conductivity.	1 Marks	

	(iv) Age Hardening: The age hardness of conducting material increases the resistivity which decreases the conductivity.				
b)	State four selection factors for selecting an insulating material.	4 Mark			
Ans:	Ans: Four selection factors for selecting an insulating material are i)Electrical ii)Mechanical iii)Thermal iv)Chemical				
	i) Electrical factor: A good insulating material should have high resistivity and low leakage current. It should have high dielectric strength and small dielectric loss.	1 Mark			
	ii) Mechanical factor: A good insulating material should have sufficient mechanical strength to withstand vibrations.	1 Mark			
	iii) Thermal factor: A good insulating material should have small thermal expansion to avoid damages, It should be non ignitable and self extinguishable.				
	iv) Chemical factor: A good insulating material should be resistant to oils, gas, fumes acids and alkalies. It should not absorb water as water reduces insulation resistance and dielectric strength.	1 Mark			
c)	Describe the effect on the capacitance of the dielectric material on the basis of factors polarizability and permittivity.	4 Marl			
Ans:	The function of a capacitor is to store charge. its capacity to store charge is measured in terms of capacitance (C) The presence of dielectric material between the two conducting material in capacitor helps the capacitor to store charge or else the circuit gets completed and current starts flowing.	2 Mark			
	When electric field is applied across the dielectric material ,the electrons of atoms are acted upon by the electric field and are displaced in a direction opposite to that of electric field this results in seperation of positive and negative charges hence dipoles are created in the dielectric material and said to be polarized				

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	- Nacuum $+$ - $ +$ $ +$ $+$ + $ +$ $++$ $ +$ $+$ $++$ $ +$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	2 Marks
	The capacitance of a capacitor in solid director is given as C = Q V But $C \propto A$ d d d d d d d d	
	where, A = Area of (muss open metal plates. d = distance believen metal plates. ° o for solid diplotuic C = E A for Vacuum dielectric Co = E o A d = distance believen metal plates.	
	where $E = Absolute parenthisty of solid dietection Eo = Absolute parenthisty of Vacuum dietectic eo = C = Eeo = C = E$	
d)	$\frac{C}{C_{o}} = \mathcal{E}_{s} \left(\begin{array}{c} \text{Kelative permitting} \\ \text{drelectric constant} \end{array} \right)^{2}$ Describe Peltier thermoelectric effect. State its application. 1. Thermoelectric effect deals with relation between heat and electrical energy.	4 Marks
	The motion of electron gets altered by the flow of current or temperature gradient. This is the basis of thermoelectric effect.	

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

		 When a current is passed through the junction of two different metals then heat is absorbed or liberated depending on the direction of current this effect is called as Peltier effect. The heat is called as Peltier heat. Peltier heat is reversible which means that the absorption can be changed to liberation by reversing the direction of current. Application: This effect is used in Refrigeration 				
Q. 3		Attempt any THREE :			12 Marks	
	a)	Compare P-type semiconductor with N-type semiconductor on the basis of (i) Majority charge carrier (ii) Minority charge carrier (iii) Impurity material (iv) Formi-lovel position in energy band diagram			4 Marks	
	Ans:				1 marks for	
			P-type semiconductor	N-type semiconductor	each point	
		(1) Majority charge	Holes	Electron		
		(ii) Minority charge	Electron	Holes		
		carrier				
		(iii) Impurity material Trivalent such as Boron, calcium Indium etc Phosphorous antimony arsenic				
		(iv) Fermi-level position in energy band diagram	Fermi level lies towards valance band	Fermi levels lies towards conduction band		
	b)	List specifications of migna w	lay (any faun)		1 Montra	
	Ans:	specifications of micro relay	are :		4 Marks 1 marks for	
	11100	1) Contact arrangement			each point	
		 2) Limiting making current 				
		3) Limiting breaking current				
		4) Overload current				
		4) Overload current				
	c)	Sketch energy band diagram of conducting and insulating material and label it well.			4 Marks	
	Ans:					

d)	d) Sketch orientation of spins in paramagnetic, ferromagnetic, anti-ferromagnetic and ferrimagnetic material.			
d) Ans	Sketch orientation of spins in paramagnetic, ferromagnetic, anti-ferromagnetic and ferrimagnetic material.	4 Marks 1 Marks for each diagram		
	Spins are aligned antiparallel but do not cancel			
0.4				
Q. 4	Attempt any THREE : State any two observatoristics of	12 Marks		
a)	(i) Electro-textile (ii) Textile-antenna used for wearable antenna.	4 IVIARKS		
Ans	: Characteristics of :- i. Electro-textile 1) They have excellent radio frequency performance	Any two characteris tics-		

Page7

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

	2) They get more and more attention for body centric communication3) They adopt woven pattern	1 Mark each
	 ii. Textile-antenna The bandwidth of these antennas is between 2.52 GHz to 13.35 GHz Textile materials get easily integrated into clothes and other wearable devices It has very low dielectric constant that reduces the surface wave losses. Increases the impedance bandwidth for the antenna. 	Any two characteris tics- 1 Mark each
b)	Describe the concept of ferroelectricity. State its applications.	4 Marks
Ans:	Concept of Ferro electricity:-	2
	Ferro electricity is the property of certain materials, that exhibit spontaneous electric polarization i.e. separation of positive and negative electric charge. Making one side of the positive and opposite side negative that can be	Marks for concept
	region which are polarized in different electronics filed. The Ferro electricity	2 Marks
	bears a close analogy to ferromagnetism.	for
		application
	Application:-	
	electric energy within a small space.	
c)	Describe with sketch B-H curve. State effect of change in temperature on area of B—H curve.	4 Marks
Ans:		2 Marks
		for
	H A B B B C C C C C C C C C C C C C	diagram
	OR	

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

	Fig (b) The B-H curve can be plotted by increasing and decreasing the filed intensity. It is shown in fig (b) The B-H curve can be plotted by increasing and decreasing the filed intensity. It is shown in fig (b) Below the Curie temperature all ferromagnetic materials exhibit the well known hysteresis in the <i>B</i> versus <i>H</i> curve. Starting with an unmagnified specimen, <i>B</i> varies reversibly with <i>H</i> for small fields. Since these is no hysteresis in this region, one defines the initial permeability, μ_{r} , in the same way as the permeability of a paramagnetic material. As the filed <i>H</i> is increased, <i>B</i> begins to increase rapidly and ultimately approaches a saturation value B_{sat} . Upon reducing the value of <i>H</i> from the saturation region to zero, it is observe that there remains a flux density B_{r} , called the remnant flux density. Since $H = O$, the material must be permanent magnetized; in fact, the magnetisation corresponding to B_{r} is equal to B_{r}/μ_{o} . The filed $-H_{c}$ required to reduce the flux density to zero is called the coercive force.	1 Marks for description 1 Marks for effect
4)	It is shown that at curie temperature saturation magnetization become zero and above that it becomes paramagnetic materials exhibit the well known phenomenon of hysteresis in the magnetization.	4 Marka
a) Ans:	State effect of temperature on superconductivity of metals.	4 Marks
AIIS;	In the superconducting state, a materials possess zero electricity resistance and behaves as a perfectly diamagnetic material, above critical temperature T_c , superconducting property of the material is destroyed and material reverts back to it's normal state.	+ Marks
e)	State any two properties and application of following material : (i) Mica (ii) Transformer oil (iii) Rubber	4 Marks
	(iv) Polymer	

Page9

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

		(i) Mica	
		Properties	1 Marks
		1. It is excellent insulation properties	for any two
		2. It release water when heated	properties
		3. It has inorganic mineral material	
		Applications 1. It is used in radio circuits, capacitor, radio tubes, segment insulation etc.	1 Marks for any two
		2. It is used in high voltage machines, traction motors, switches, plugs, fuse, holder,	apllications
		(ii) Transformer oil	
		Properties	
		1. It has higher resistivity	
		² It has small viscosity	
		3. It has low density	
		Applications	
		1. It is used for impregnation	
		2. It is used high voltage transformers, capacitors.	
		(iii) Rubber	
		<u>Properties</u>	
		1. It is an elastic substance	
		2. The vulcanized rubber is stretchable and elastic	
		3.	
		Application • •	
		1. It is used in flexible wires, jack cards and installation wires	
		2. It is used in manufacturing tubes, tyres etc.	
		(iv) Polymer	
		Properties	
		1. It can be molded	
		2. It has ability to soften and even melt	
		Application	
		1. It is used to produce yarns, cloths and films	
		2. The synthetic resins are popular in the electrical installations.	
Q.5		Attempt any TWO :	12 Marks
	a)	The resistivity of pure copper is 1.56 μ.Ω-cm. An alloy of copper containing 1	6 Marks
		atomic percent nickel has a resistivity of 2.81 μ .Q-cm. An alloy of copper	
		containing 3 atomic percent silver has a resistivity of 1.98 μ .Q-cm. Calculate the	
		resistivity of copper alloy containing 2 atomic percent nickel and 2 atomic	
		percent suver.	

		(vi) Silicon Iron alloy				
	Ans:			1 Marks		
		Materials	Classification	each		
		(i) Platinum	Paramagnetic			
		(ii) Iron	Ferromagnetic			
		(iii) Glass	Diamagnetic			
		(iv) Nickel oxide	Anti -ferromagnetic			
		(V) Quartz	Diamagnetic			
		(vi) Silicon Iron alloy	Ferromagnetic			
	c) Describe effect of plate area, thickness of dielectric material, permittivity on capacitance of a capacitor.					
	Ans:	The capacitance of capacitor in vacuum is given as				
			Qo			
		The capacitance of a capacitor in solid diele	ectric is given as			
		<i>C</i> =	$=\frac{Q}{m}$			
		The conscitance of a parallel plate conscite	pris given as	2 Manlea		
		The capacitance of a paranet place capacito	sh is given as			
		C =				
		Where	u			
	 "A" is the cross sectional area of metal plates and it is directly proportional to capacitance. As "A" increases Capacitance is also increases. "d" is the thickness of dielectric material and it is inversely proportional to 					
		capacitance. As "d" increases Capacitance is also decreases and vice-versa.				
	3. " ε " is the relative permittivity of free space and it is directly proportional to		1 Marks			
	capacitance. As " ε " increases "C" also increases.					
2 (
Q.6	A)	Attempt any TWO :		12 Marks		
	a)	Explain thermal conductivity and coeffic	cient of thermal conductivity in	6 Marks		
		semiconductor material.				
	Ans:	Thermal conductivity:-		3 Marks		
		Thermal conductivity (often denoted k, λ , or κ) is the property of a material to conduct				
		heat. It is evaluated primarily in terms of the Fourier's Law for heat conduction. In				
		general, thermal conductivity is a tensor property, expressing the anisotropy of the				
		property.				
	meat transfer occurs at a lower rate in materials of low thermal conductivity than it materials of high thermal conductivity. Correspondingly, materials of high therma					
	conductivity are widely used in heat sink applications and materials of low therm					
	conductivity are used as thermal insulation. The thermal conductivity of a material m					
		depend on temperature	The morning conductivity of a material may			
		Examples of Coefficient of thermal conductivity in semiconductor material:-				
		Examples of Coefficient of thermal conductivity in semiconductor material				

						3 Marks
			Semiconductors	Thormal		
				Conductivity (k)		
			AlGaAs	90		
			GaAs	46 to 55		
			GaN	40 to 130		
			Ge	58 to 60		
			InP	68		
			Si	140 to 163		
			SiC	16 to 55		
	b)	Explain hysteresis	loss and eddy current	loss of magnetic mater	ial.	6 Marks
	Ans:	Hysteresis loss of	magnetic material:-			3 Marks
		• It is also kn	own as Iron I oss or Core	• Loss and it is always o	onstant	
		 It is also kit Hysteresis 	loss is due to the rever	sal of magnetization c	f transformer core	
		whenever if	t is subjected to alternati	ng nature of magnetizir	g force. Whenever	
		the core is s	subjected to an alternatin	g magnetic field, the do	main present in the	
		material w	ill change their orienta	tion after every half	cycle. The power	
		consumed b	y the magnetic domains	for changing the orienta	tion after every half	
		cycle is call	ed Hysteresis loss.			
		•				
		Eddy current loss	of magnetic material:-			
		• When an al	ternating magnetic field	is applied to a magnetic	material an emf is	234 1
		induced in	the material itself accord	ling to Faraday's Law	of Electromagnetic	3 Marks
		induction. S	Since the magnetic mate	rial is a conducting ma	terial, these EMFs	
		circulates c	urrents within the body	of the material. These	circulating currents	
		are called	Eddy Currents. Eddy	current will occur wl	nen the conductor	
		experiences	a changing magnetic f	ield. It produces a los	ss (I ² R loss) in the	
		magnetic m	aterial known as an Eddy	y Current Loss.	to me another of the	
		• Similar to n	ysteresis loss, eddy curre	nt loss also increases the	sees in a magnetic	
		magnetic in material are	also known by the nat	nu the eddy current to	losses or magnetic	
			also known by the ha	the from tosses of core	losses of magnetic	
		100000				
L	I					

	$\begin{tabular}{ c c } \hline \\ \hline $	Diagram is optional.
c)	Suggest two passive materials used for substrate. metal and capacitance of semiconductor device fabrication. State their two functions.	6 Marks
Ans:	Passive materials (i)Substrate: most widely used substrate are either plastic, glass or ceramic. Functions: i) They are used for deposition of thin films layers. (iii) Plastic substrate is used only for thin film solar cells. (iv) Glass or ceramic are used for deposition of metals for resistors and capacitors	1 Marks (Any 2) 1 Marks (Any 2)
	(ii)Metals: Commonly used metals are gold,platinium,Aluminiun,Nickel- chromium .	1 Marks (Any 2)
	 (i) They act as capacitor plates (ii) They are used for resistors (iii) For mechanical support. (iv) As heat dissipater. 	1 Marks (Any 2)
	(iii) Capacitance materials :commonly used capacitance material are SiO,ZnS,SiO ₂ ,TiO2,BaTiO2,MgF2,Ta2O5,Al2O3 Functions :	1 Marks (Any 2)
	 (i) a pin-hole free continuous layer (ii) High dielectric constant (iii) A low loss factor at the desired frequency (iv) Ability to withstand thermal stresses without cracking 	1 Marks (Any 2)